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Abstract— While 2D object detection has made significant
progress, robustly localizing objects in 3D space under presence
of occlusion is still an unresolved issue. Our focus in this work
is on real-time detection of human 3D centroids in RGB-D data.
We propose an image-based detection approach which extends
the YOLO v3 architecture with a 3D centroid loss and mid-level
feature fusion to exploit complementary information from both
modalities. We employ a transfer learning scheme which can
benefit from existing large-scale 2D object detection datasets,
while at the same time learning end-to-end 3D localization from
our highly randomized, diverse synthetic RGB-D dataset with
precise 3D groundtruth. We further propose a geometrically
more accurate depth-aware crop augmentation for training on
RGB-D data, which helps to improve 3D localization accuracy.
In experiments on our challenging intralogistics dataset, we
achieve state-of-the-art performance even when learning 3D
localization just from synthetic data.

I. INTRODUCTION

Detection of persons and objects in 3D space is an im-
portant capability for service, domestic and industrial robots
that interact with their environment. In indoor scenarios,
RGB-D sensors such as the Kinect v2 are often used for this
purpose. However, while recent advances in computer vision
have mostly solved the unimodal 2D detection problem on
RGB images, it is not yet fully understood what is the best
representation and strategy for approaching the 3D detection
task, especially on multimodal RGB-D data, where large-
scale datasets are scarce and we want to benefit as much as
possible from existing work on 2D detection.

In this paper, we tackle the problem of learning to detect
and accurately localize 3D centroids in RGB-D data in an
end-to-end fashion, with an experimental focus on human
detection in a challenging intralogistics context. We show
that 3D localization can, to a large part, be learned from a
diverse and highly randomized synthetic RGB-D dataset with
perfect 3D groundtruth, and that for successful fine-tuning
on real-world data, no manual 3D annotation is required.
Our proposed real-time approach uses a strong image-based
YOLO v3 single-stage detector as starting point, extends the
RGB feature extractor with a separate depth stream via
mid-level fusion, and utilizes a hardwired transfer learning
strategy that can reuse existing pretrained weights from large-
scale 2D object detection datasets. Thereby, incorporating the
depth channel does not require training from scratch and thus
does not lead to a loss in 2D detection performance. For 3D
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Fig. 1: Our method (green) localizes 3D person centroids much
more robustly than a baseline (red) on our intralogistics dataset.

localization, we extend the resulting RGB-D YOLO v3 de-
tector with a centroid regression output. Finally, we propose
a depth-aware, scale-preserving variant of zoom-in/zoom-out
training-time augmentation [1] for accurate depth regression.

As opposed to the existing methods we compare against
[2]–[5], our end-to-end 3D regression can exploit comple-
mentary RGB and depth information by fusing modalities
at the feature extractor stage, and does not rely on any 3D
point cloud representation. It is therefore robust to missing
depth data and works well under partial occlusion.

Our key contributions in this paper are:
1) We demonstrate that accurate 3D localization under

partial occlusion is an unsolved issue, which is an
important aspect e.g. for human detection in robotics.

2) We are, to our best knowledge, the first to propose
an RGB-D fusion strategy for the fast YOLO v3 one-
stage detector, with an accompanying transfer learning
strategy that leverages existing large-scale 2D datasets.

3) Via heavy domain randomization, we are able to learn
end-to-end regression of 3D human centroids from a
synthetically rendered multi-person RGB-D dataset.

4) We find that standard 2D crop/expansion augmenta-
tions are unsuitable for depth data, and propose a
geometrically more accurate variant that accounts for
the resulting shift of focal length.

5) On our challenging real-world RGB-D dataset from the
intralogistics domain, our method outperforms existing
baselines in 3D person detection without requiring
additional hand-annotated 3D groundtruth for training.

Our approach achieves real-time speed at 25 Hz on a GPU.



Method Modalities Detector Fusion strategy Output Dataset

Munaro et al., 2014 [6] RGB+D PCL+HOG-SVM 3D proposals → 2D classifier 3D boxes KTP
Mees et al., 2016 [7] RGB+D+Flow Fast R-CNN 2D late (adaptive gating) 2D boxes InOutDoor (IO)
Vasquez et al., 2017 [2] RGB+D Fast R-CNN 3D proposals → 2D detector 2.5D centroids MobilityAids, IO
Guerry et al., 2017 [8] RGB+D Faster R-CNN 2D early/mid/late 2D boxes Onera, Mensa, IO
Ali et al., 2018 [9] Projected LiDAR YOLO v2 – 3D boxes + orient. KITTI
Simon et al., 2018 [10] Projected LiDAR YOLO v2 – 3D boxes + orient. KITTI
Qi et al., 2018 [11] RGB+D/LiDAR FPN+Fast R-CNN 2D boxes → 3D frustums 3D boxes + orient. KITTI, SUN
Zimmermann et al., 2018 [4] RGB+D OpenPose 2D joints → 3D voxel grid 3D body joints MKV-t, CAP-t
Lewandowski et al., 2019 [12] D FPFH-SVM – 3D boxes Supermarket
Kollmitz et al., 2019 [3] RGB or D Faster R-CNN – 3D centroids MobilityAids
Ophoff et al., 2019 [13] RGB+D YOLO v2 2D mid-level features 2D boxes KITTI, EPFL
Our approach RGB+D YOLO v3 2D mid-level features 3D centroids Intralogistics

TABLE I: Qualitative comparison of related work on person detection in 3D and RGB-D

II. RELATED WORK
A. 3D person detection in RGB-D

There is a vast amount of literature on multi-modal [14]
and RGB-D-based [15] object recognition. In Table I we
list recent works that were evaluated on human detection.
Some fuse color and depth information, but only output 2D
bounding boxes and do not tackle the issue of 3D localization
[7], [8], [13]. Several approaches utilize a geometric 3D point
cloud representation [2], [4], [6], [11], [12], which comes
with certain drawbacks. For example, the method by Qi et al.
[11] suffers from three weaknesses towards which our pro-
posed method should be more robust: 1.) Their 3D stage fails
to accurately localize objects in locally sparse point clouds.
Here, our approach can leverage complementary RGB data
as it does not rely on a point cloud representation. 2.) When
multiple instances of a class share the same 3D frustum,
only a single instance is detected. This scenario is frequent
in our indoor environments, where humans often partially
occlude each other. 3.) Their RGB-based 2D detector fails
under difficult lighting conditions, where our method can
exploit complementary depth data due to our mid-level fusion
strategy. The methods by Munaro et al. [6] and Vasquez et
al. [2], which we include as baselines in our experiments,
suffer from similar conceptual limitations.

More recent works therefore often leverage a 2D image-
based representation [3], [7]–[10], [13] in order to exploit
advances in 2D object detection. They are based upon single-
stage detectors like YOLO v2 [16] or the computationally
more expensive two-stage R-CNN framework [17], [18].

Most closely related to our work are the methods by
Ophoff et al. [13] and Kollmitz et al. [3]. With focus only
on 2D detection, [13] incorporates RGB+D fusion into the
earlier YOLO v2 architecture. It is not as deep, uses no
shortcut connections and does not include a feature pyramid
compared to the YOLO v3 [19] architecture that our work is
based upon, which imposes extra constraints on where we
can fuse features. Similar to our method, and contrary to their
earlier work [2], Kollmitz et al. [3] do not employ a 3D point
cloud representation, and instead utilize an end-to-end 2D
detector with 3D centroid output. Their two-stage approach
is evaluated in a multi-class hospital scenario including
persons with walking aids. They provide separate models
for detection on either RGB or depth data. In contrast, our
method follows an efficient one-stage approach, performs

principled fusion of the RGB+D modalities to exploit com-
plementary information, utilizes synthetic training data to
learn 3D localization, and incorporates a depth-aware crop
augmentation scheme that improves 3D localization. We
evaluate our method and baselines on a novel, challenging
intralogistics dataset.

B. Learning from synthetic RGB-D data
Learning from simulation and transfer into the real world

are currently quickly evolving topics in computer vision
and robotics. Most work so far focuses on rigid objects.
[20] explore domain randomization for robotic manipulation.
Using synthesized RGB images with random camera and
object positions, lighting, and textures, they learn accurate
3D detectors for geometric primitives without pretraining on
real images. [21] learn to estimate 3D orientation of objects
using synthetic RGB images based upon CAD models with
domain randomization. [22] focus on category-agnostic 2D
instance segmentation using synthetic depth also from CAD.

Humans vary greatly in shape and appearance, and are thus
particularly challenging to simulate. The work by Shotton et
al. [23] on articulated human pose estimation focused on
single-person scenarios using synthetic depth images, with-
out simulating any 3D background. This also applies to the
SURREAL dataset [24], which however contains additional
modalities such as RGB. [25] perform semantic segmentation
on KITTI [26] by training on synthetic RGB images and
groundtruth masks from a commercial computer game. In
contrast to these works, our synthetic dataset [27] focuses on
multi-person human detection in clutter and under occlusion.
It contains up to several dozens of person instances per
frame, diverse 3D backgrounds and large amounts of fore-
ground occluder objects with strong domain randomization
(unlike [28]–[30]). It is composed of synchronized RGB-D
pairs, where we additionally model noise characteristics of
the Kinect v2 time-of-flight sensor.

III. METHOD
We now present our solution for robust detection and 3D

localization of persons from RGB-D data. Following the data
flow, we first describe our synthetic RGB-D dataset that we
use to learn 3D human detection and localization. We then
propose a depth-aware and scale-preserving augmentation
scheme for training 3D detectors on RGB-D data. Finally,
we present our modifications to the YOLO v3 detector [19]



Fig. 2: 3D groundtruth joint locations on our synthetic RGB-D and our real-world RGB-D datasets. The latter ones are derived from
offline 3D human pose estimation [4], and only used for fine-tuning on real-world data if desired. Our video shows further examples.

to fuse RGB and depth information, and regress 3D centroids
in an end-to-end fashion along with a training scheme that
allows us to benefit from existing 2D detection datasets.

A. Synthetic RGB-D data for learning 3D localization

Obtaining a sufficiently diverse RGB-D dataset with ac-
curate 3D groundtruth is difficult and time-consuming in
the real world. We therefore propose to learn 3D human
localization from a synthetic RGB-D dataset that has been
rendered using a semi-photorealistic game engine (Unreal
Engine 4). Our initial work in this direction [27] focused
on 2D detection. We now extended our simulation to output
sensor-centric groundtruth 3D coordinates and visibility flags
for 23 human body joints (Fig. 2, left). We increased the
number of rigged 3D human models by a factor of 4 and
doubled the amount of motion-capture animations to around
100 each, now also including sitting, kneeing and lying
poses. Inspired by the success of 2D synthetic occlusion
augmentation [31], we significantly increased the number
of 3D occluder objects to over 700 to enhance foreground
diversity (some of which can be seen in Fig. 3, left).

For each of the 6 scenes from [27], we initially generate
5,000 RGB-D frames. In [27], we showed that appropriate
filtering of groundtruth bounding boxes is important for
successful training: We therefore set ignore flags on all
2D groundtruth person boxes with extremely low contrast,
with a groundtruth instance mask that covers less than 300
square pixels, or where more than 80% of the essential
body joints are either truncated or occluded after projecting
them onto the 2D instance mask. We then iterate over the
5,000 frames per scene, remove all frames which have less
than two remaining (non-ignore) boxes, followed by random
subsampling to finally obtain 2,500 sufficiently dense frames
per scene. Combining all six scenes, the resulting RGB-D
dataset thus consists of 15,000 training samples.

B. Weak real-world labels from 3D human pose estimation

[3] propose a relatively robust clustering-based heuris-
tic to derive groundtruth 3D centroid coordinates for their
training set, without requiring manual 3D annotation. This
approach can fail if persons are truncated, for example when
only the head or an arm are visible. Unless such persons are
skipped, which can prevent difficult examples from ending
up in the training set, the centroid would be offset to the
top or to the side. We therefore propose 1.) to use a more
informed approach, by leveraging offline 3D human pose
estimation [4] to derive weak groundtruth from predicted 3D
body joints, 2.) to select a fixed, central body joint as the

‘centroid’ regression target, which is more stably attached
to the human body under truncation or unsual poses (e.g.
stretching out a single arm) and thus more suitable for
3D human tracking [32] or 3D articulated pose estimation
applications. For the latter, top-down methods such as [33]
often require the pelvis joint, localized between the hip joints,
as body-centric root joint for input, which we adapt as 3D
regression target. However, in principle, our method can be
trained on any (derived) body joint, as shown in Fig. 2 (right).

C. Depth-aware augmentation

The 2D data augmentation pipeline of our underlying
YOLO v3 implementation [34] involves random cropping
and expansion of the image with corresponding adjustment of
the bounding boxes, originally referred to as “zoom in” and
“zoom out” [1]. This is followed by resizing to a fixed-size
square input image provided to our network during training.

Directly applying crop or expansion augmentation and
resizing to an RGB-D image can distort the understanding
of objects’ metric scale in the perceived environment, which
is essential for accurate 3D perception. Therefore, we pro-
pose a depth-aware variant of this augmentation that adapts
groundtruth depth labels and input depth to the current “zoom
level” at training time, and preserves the metric scale and
aspect ratio of the original image for a physically more well-
grounded representation.

Our network has a square input resolution of dn × dn
pixels during training. Therefore, to preserve aspect ratio, we
constrain ourselves to random square crops of varying size
dc×dc. Under the assumption of a single sensor with known
camera matrix K, resizing of a crop to the input dimension
dn × dn can be expressed as a zooming operation [35]
with zoom factor s = dn/dc. Zooming is usually attributed
to a change in focal length. Instead, to keep the intrinsic
parameters intact, we apply the scaling to the depth values:uv
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here (x, y, z) is a 3D point resolved in the RGB-D sensor
frame and z/s is the new scaled depth at input pixel (u, v).
While this operation is not physically well-grounded for
arbitrary crops not centered at the principal point of the
RGB-D sensor, this approximation already yields a signif-
icant improvement, as shown later in our ablation studies.
In addition to depth scaling used during training, we scale
input depth measurements at inference time according to the
resize transformation applied to the RGB-D image.
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Fig. 3: Overview of our proposed approach, which extends the YOLO v3 [19] detector with mid-level RGB+D feature fusion, depth-aware
augmentation, and 3D centroid regression. We show that the latter can be learned from synthetic RGB-D images.

D. Network architecture

Our method is based upon the YOLO v3 network, which
we modified to also predict 3D centroids. First, to leverage
depth information, we extend the Darknet-53 backbone to ac-
commodate the additional single-channel depth data. There-
fore, we duplicate layers up until a fusion point resulting in
an RGB and depth specific backbone (blue in Fig. 3).

We evaluate two different mid-level fusion points, which
are placed at the end of residual stages in the Darknet-53
architecture, in our case after Layer 9 or Layer 26. Mid-level
fusion has shown to lead to good results [13], [36]. Further-
more, we fuse the modalities before the pyramid structure
of the network begins (see Fig. 3). The modalities are fused
by concatenating the output features of both backbones along
the channel dimension and using a 1×1 convolution to halve
the number of channels to the original channel dimension.

The final 1 × 1 convolutions of the three output stages
are extended to predict a centroid (cx, cy, cz) for each
anchor box. cz is regressed directly in metric scale. The cx
and cy coordinate are first predicted in image coordinates
(cu, cv) and then backprojected with help of cz and the
camera matrix. This mirrors the unit system of our input.
Furthermore, we formulate the regression targets tcu , tcv in
a constraint manner, relative to the bounding box coordinates
where (bu, bv) is the top-left corner of the bounding box with
height bh and width bw in pixel coordinates:

cu = bu + bwσ(tcu)

cv = bv + bhσ(tcv )

cz = tcz

(2)

This limits the centroid to lay within the predicted bound-
ing box. The 2D YOLO loss per anchor box is then extended
by an additional term

Lcentroid = |tcz − t̂cz |+
∑

i∈{u,v}

BCE(σ(tci), σ(t̂ci)) (3)

where t̂ci denotes the groundtruth label. While for cu, cv
we keep the sigmoid binary cross-entropy loss used for 2D
bounding box centers in our YOLO v3 implementation, we
found that `1 loss works best for centroid depth cz .

E. Transfer-learning strategy

Our transfer learning strategy is inspired by Ophoff et
al. [13], but without an extra step to first train a depth-
only detector. To benefit from existing large-scale 2D object
detection datasets, we first initialize all layers from existing
YOLO v3 RGB detector weights pretrained on ImageNet
and MS COCO [37], [38]. While other transfer learning
strategies, such as proposed in [13], [39], could also be used,
we already obtained good results using this approach. For the
depth backbone, we duplicate RGB weights, but initialize
the first layer (that takes single-channel depth images) from
scratch. As indicated by the coloring in Figure 3, the fusion
block is initialized using a hardwired fusion scheme such
that at the start of training, the existing RGB features are for-
warded as-is. In the 3 output layers that we extended with 3D
centroid regression, we randomly initialize weights for the
new outputs, while leaving the original 2D detection weights
unchanged. This initialization strategy, which is illustrated
further in our video, allows to maintain the pretrained 2D
performance despite the changes to the network architecture.

IV. EXPERIMENTAL SETUP
Our implementation is based upon MxNet using YOLO v3

from GluonCV [34]. We train for a total of 80 epochs using
stochastic gradient descent. During a warmup phase of 20
epochs, we gradually increase the learning rate to 6e-4, after
which the learning rate is reduced to 1e-6 over 50 epochs
using cosine decay [40], [41]. Finally, the model is trained
for another 10 epochs at a constant rate of 1e-6. For training,
we use Volta V100 GPUs, and a Titan RTX for testing.

A. Real-world intralogistics RGB-D dataset

Our application use-case is person detection in the intralo-
gistics domain, with the goal of making autonomous guided
vehicles (AGVs) human-aware. Human detection in such
professional environments brings up certain challenges, such
as people wearing special clothing; human forklift operators
standing on the footrests of their vehicles; narrow, cluttered
spaces with significant occlusion, which the robot observes
from an ego-centric perspective; and the lack of publicly
available datasets, especially for sensor modalities containing
sensitive information, such as RGB-D. To train and evaluate
our method, we therefore recorded a diverse dataset using



two different AGV platforms equipped with a Kinect v2
sensor at around 1.50m and 1.80m height. Data has been
recorded over several weeks at four different locations (two
warehouses, a small food factory, and a robotics laboratory
with forklifts and warehouse shelves). It includes scenes with
very few people, as well as very crowded scenes with up to
around 20 people that frequently occlude each other and have
very similar appearance due to wearing protective clothing.

From these recordings, we selected around 3.1k diverse
frames and split them into a training set of 1.5k, a validation
set of 0.5k and a 2D test set of 1.1k real-world frames,
with each split recorded at a different location or day. Each
frame consists of a registered pair of RGB-D images, where
we manually annotated 2D person bounding boxes. On the
training set, we derive weak 3D groundtruth as described in
Section III-B. For 3D evaluation, we labeled a continuous 60-
second test set sequence from one of the environments with
3D centroids, using our trajectory-based annotation tool [32]
which we extended for annotation of centroid heights over
ground. In the sequence, persons are highly dynamic, assume
different poses, and some push carts around. For evaluation,
we mark all centroids with ignore flags that are too heavily
occluded in the point cloud, or outside of the Kinect v2 depth
camera’s field of view (with 8m range limit), in order not to
penalize baseline methods which rely on the availability of
depth data.

B. Baselines

We compare our approach with 5 different RGB-D base-
lines. Besides [2]–[4], [6] (see Table I), we also include an
RGB-only YOLO v3 baseline that naı̈vely lifts 2D centroids
into 3D by computing median depth [5]. The 2D detector for
this method was trained on MS COCO; with naı̈ve lifting into
3D, we saw no improvement in 3D performance when fine-
tuning on our dataset. For [6], the HOG-SVM was trained
on a person dataset recorded in an airport environment [32].
We fine-tuned [3] on our real-world training set, as the RGB
variant initially did not perform well in our scenario. For both
[2] and [3], we show the better variant of RGB or depth, and
obtained best results when considering only detections for the
person class; we do not use tracking. For the other methods,
we use the original, trained model from the publicly available
implementations. [4] is not fast enough for our use-case (1-2
Hz), but we still decided to include it as we were interested
in how a radically different, bottom-up 3D pose estimation
approach would perform on the 3D person detection task. For
evaluation, we derive 3D centroids from hip joint positions
as described in Sec. III-B; if hips are not detected, we fall
back to the median of essential body joints (excluding eyes).

C. Evaluation metrics

For 3D evaluation on our real-world test sequence, we use
a modified variant of COCO metrics [38], where instead of
bounding box IoU we apply a metric distance threshold and
compute 3D average precision (AP) as well as peak-F1 score.
For methods that do not output robust estimates of centroid
height [2], [3], we are more lenient and perform detection-
to-groundtruth association only on ground plane coordinates

Variant Modality 2D AP 3D AP ↑ RMSE
VOC 0.25m 0.5m ↓

COCO model RGB 71.0 – – –

After finetuning RGB 74.9 – – –
+Centroid regression RGB 72.5 17.5 48.2 56.9
+Depth-aware augm. RGB 75.4 46.5 73.4 39.3

After finetuning RGB+D 75.4 – – –
+Centroid regression RGB+D 73.4 47.6 74.5 34.7
+Depth-aware augm. RGB+D 76.6 60.6 81.5 30.8
/ Fusion after stage I RGB+D 76.5 58.9 80.4 31.8
+More synth. data RGB+D 77.0 66.4 83.0 27.8

TABLE II: Ablation studies on our synthetic validation set with
perfect 3D groundtruth. RGB+D fusion after stage II unless noted.

while ignoring the height. For ablation studies on our precise,
synthetic 3D groundtruth, we also report root mean square
error (RMSE), as well as 2D bounding box AP according to
PASCAL VOC criteria [42] at 0.5 IoU.

V. RESULTS

A. Quantitative evaluation

Table II shows results of ablation studies on our synthetic
validation set (2 extra scenes, 5k diverse frames) with precise
groundtruth. We used half of the synthetic training set (7.5k
frames) for training. It can be seen that our depth-aware
augmentation scheme boosts accuracy in both 2D and 3D
significantly, compared to when using standard rectangular
crop augmentation and resizing without scaling groundtruth
labels and input depth appropriately. With the full synthetic
training set, especially 3D localization at the smaller distance
threshold improves. Incorporating RGB+D fusion leads to
significantly higher 3D accuracy, and improves 2D slightly.

In Table III and the corresponding precision/recall curves,
we compare variants of our method to other baselines on
a 60-second hand-annotated sequence (1.8k frames) from
our real-world intralogistics test set. It can be seen that
our RGB-D method fine-tuned only on our real-world data
(�) does not achieve a better peak-F1 score than our naı̈ve
YOLO v3 baseline trained on MS COCO (�) under the
3D metric with d=0.5m, and performs especially bad at
d=0.25m. This could indicate that our real-world training set
is too small. Training only on synthetic images (�), where
through domain randomization we can generate an unlimited
amount of frames and here thus have 10x more data with
precise 3D groundtruth, improves performance drastically at
both thresholds. Adding real to the synthetic training data
(�) further improves performance. The corresponding RGB-
only model (�) is similarly strong at d=0.5m. However,
at d=0.25m, the combination of both modalities is around
+9% better in peak-F1, which shows that our network can
exploit depth information for more accurate 3D localization.
Yet, as we also observe qualitatively, our approach degrades
gracefully when only RGB data is available.

By combining 3D clustering-based region proposals with
a modern deep learning-based 2D detector, Vasquez et al.
(�) achieve very good localization accuracy and outperform
our method in peak-F1 at d = 0.25m. Here, our method
might be at slight disadvantage because we train on pelvis
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Method 3D AP ↑ Peak-F1 ↑
0.25m 0.5m 0.25m 0.5m

� Munaroet al [6] (RGB+D) 56.0 77.9 62.7 76.1
� Vasquezet al [2] (RGB+D, RGB) 66.3 73.1 79.7 84.2
� Kollmitzet al [3] (RGB, VGG-M) 37.9 72.5 56.8 79.3
� Zimmermannet al [4] (RGB+D) 55.8 67.3 69.1 79.9
� Naı̈ve YOLO v3 (RGB+D) 58.1 79.8 72.8 86.6
� Ours (RGB, S+R) 57.5 95.2 69.8 93.8
� Ours (RGB+D, R) 39.0 82.1 56.7 87.3
� Ours (RGB+D, S) 59.9 93.7 72.5 93.5
� Ours (RGB+D, S+R) 68.7 96.5 78.6 95.3

TABLE III: Precision-recall curves for 3D centroids on a 60-sec
sequence of our real-world test set. Solid lines correspond to an
evaluation radius of 0.5m, dashed 0.25m. Crosses are at peak-F1.
For our method, S stands for synthetic, R for real training data.

joints, whereas our test sequence has been annotated with
3D centroids to be fair to the baseline methods.

Methods which use a geometric 3D point cloud repre-
sentation [2], [4], [6] (�,�,�) are more limited in recall
compared to our proposed approach, which uses an image-
based representation and exploits complementary RGB+D
information through feature fusion. If we extend our evalua-
tion to the (wider) RGB sensor FOV, our method makes the
most out of the available data, and our peak-F1 margin over
the naı̈ve baseline increases to around +13% at d = 0.5m.

B. Qualitative results

In initial 2D detection experiments, we observed that
almost no misdetections occur when using a pretrained,
RGB-only COCO model, despite the unusual appearance of
persons in our scenario. Sometimes, however, 2D bounding
boxes get split in two when foreground occluder objects, such
as the handle bar grip of our robot platform or a human arm,
protrude into the camera FOV. This shows that exploiting
depth information is important as it may help in segmenting
foreground from background. It also shows that 2D bounding
boxes are not an optimal representation, which provided our
motivation for regressing 3D centroids end-to-end without
relying on such an intermediate representation.

Qualitative 3D detection results are shown in Figures 1, 4
and 5. As in 2D, many baseline methods have problems in
localizing persons under partial occlusion, and sometimes

Fig. 4: Qualitative 3D detection results at peak-F1 from a scene of
our RGB-D dataset. Colors from Table III; grey is groundtruth.

Fig. 5: Results on two further, more cluttered scenes.

even place centroids onto the scene background (such as
shelves, pallets or walls). Furthermore, all baselines except
for the RGB variant of [3] are strongly affected by missing
depth data at the image boundaries, or at far distances. Our
proposed RGB+D method is more robust in both regards.

VI. CONCLUSION
In this paper, we presented a real-time approach to the 3D

human detection task, based upon the YOLO v3 architecture
that we extended with an efficient RGB+D fusion scheme,
3D centroid regression, and depth-aware augmentation. Our
learning strategy benefits from both synthetic and real-world
training data. We demonstrated that it is possible to learn
very precise 3D localization from our diverse, synthetic
dataset, and showed on a subset of our challenging real-
world intralogistics dataset that our method achieves higher
detection accuracy than state-of-the-art baselines.

Our approach easily extends to other RGB(-D) sensors
with different intrinsics, as regenerating our entire synthetic
dataset with a different sensor setup only takes around 5 min-
utes of manual effort, while obtaining real-world 3D training
labels for fine-tuning requires no manual 3D annotation.
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